

Supercapacitors for Extreme Environment Operations

Erik J. Brandon, Keith J. Billings, Keith B. Chin, Simon C. Jones, Charlie Krause, Jasmina Pasalic, Abhijit Shevade, Marshall C. Smart and William C. West

Electrochemical Technologies Group

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109 *erik.j.brandon@jpl.nasa.gov

2018 Spring Materials Research Society Meeting

Phoenix, AZ Friday, April 6, 2018

Design Considerations

Double-layer capacitors are well suited for wide temperature operation

- Non-Faradaic charge storage eliminates kinetic limitations associated with electrode diffusion processes
- Solid electrolyte interface (SEI) stability not a concern at elevated temperatures
- Typically operate in the -40 to +70°C range
- Limited largely by electrolyte solvent properties

Low temperature operation

- Acetonitrile electrolyte freezes between -40 and -50°C
- Decreasing solvent conductivity and increasing cell resistance at low temperature

High temperature operation

- Acetonitrile electrolyte boils at 82°C
- Reduced voltage window and electrolyte decomposition at elevated temperatures

Representative Double-Layer Capacitor Response between +20°C and -50°C

At temperatures <-20°C, significantly increasing voltage drop across internal resistance

Cell ESR More Sensitive to Temperature Than Capacitance

10 F Maxwell Boostcap cell Discharge current = 1 A

- Increase in equivalent series resistance (ESR) more significant
- Capacitance response less sensitive
- Requires managing ESR increase

Solvent Blending Strategy

- Depress freezing point
- Maintain sufficient dielectric constant for high salt solubility

AN = acetonitrile

BN = butyronitrile

DEE = diethyl ether

DME = dimethyl ether

DMF = N,N-dimethyl formamide

DIOX = 1,3-dioxolane

EA = ethyl acetate

GBL = γ -butyrolactone

MA = methyl acetate

MF = methyl formate

PN = propionitrile

PC = propylene carbonate

THF = tetrahydrofuran

2-MeTHF = 2-methyl tetrahydrofuran

- 1. E.J. Brandon, W.C. West, M.C. Smart, L.D. Whitcanack, G. A. Plett, J. Power Sources, 170, 225 (2007).
- 2. W.C. West, M.C. Smart, E.J. Brandon, L.D. Whitcanack, G. A. Plett, J. Electrochem. Soc., 155, A716 (2008).
- 3. Y. Korneblitt, A. Kajdos, W.C. West, M.C. Smart, E.J. Brandon, A. Kvit, J. Jagiello, G. Yushin, *Adv. Ener. Mater.* 22, 1655 (2012).

3:1 Solvent Blends Maintain Low ESR at Low Temperature

2032 format coin cell Nuchar high surface area carbon electrode + Tonen PE separator

Conductivity of Low Temperature Blends

Operation of Cylindrical Cells to -70°C

Operation to -70°C through use of AN:MF modified electrolytes and standard high surface area carbon (YP-50)

Cells assembled at the Case Western University Electrochemical Capacitor Prototyping Facility (Robert Savinall and John Miller)

High Temperature Operation Electrode Options

Binder-free high surface area carbons

- Eliminate concerns over decomposition of binder
- Difficult to scale-up with conventional current collectors

High surface area carbons with conventional binders

- More straightforward scale-up
- More susceptible to thermally induced decomposition
- May need to identify alternatives that are more stable

Ionic Liquid Thermogravimetric Analysis

Swagelok Cells for Longer Duration Cycling

Swagelok cells for high temperature prototype testing

Flat Cell Housing with Coin Cell

Used in conjunction with coin cells, to maintain edge seal through static loading during high temperature testing

Initial Results with Spray Coated Electrodes

- Electrode: 90% Norit carbon, 5% acetylene black, 5% PTFE
- 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide
- Polyimide-based separator (ceramic separators are difficult to implement)
- Voltage limits of 0.5V to 2.0V, based on application requirements
- Currently performing CV scans to better select voltage window

ESR Relatively Stable for Extended Cycling

Only moderate increases in ESR observed for >4000 cycles

Stability of Ionic Liquid

Extracted ionic liquid from 160°C treatment in Swagelok cell indicates no decomposition or reaction with cell components via FTIR spectroscopy (corroborated by NMR spectroscopy)

Summary

- Can extend operation to low temperatures through blending of organic solvents
- High temperature operation requires more extensive change in electrolyte (ionic liquids)
- Likely need to narrow the operating voltage window at 160°C

Scale-up and testing of materials in larger format cells is

ongoing

Acknowledgements

This research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology under a contract with the National Aeronautics and Space Administration.